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Abstract-An exact three-dimensional solution of the equations of linear piezoelectricity is given
for the static response of a finite laminated piezoelectric cylinder with its ends simply supported.
The equilibrium equations and the conservation of charge equation are constructed in cylindrical
coordinates. The three displacement components and the electrostatic potential are expressed in
terms of Fourier series in the axial and circumferential directions, leading to a coupled system of
four ordinary differential equations in the radial coordinate. The Frobenious method is used to
obtain the elastic and electric fields for each layer of the laminate, which are a function of eight
constants. Enforcing the boundary and continuity conditions across each interface yields the
required number of equations to solve for these constants. Several examples are presented to study
the fundamental behavior of these solids. © 1997 Elsevier Science Ltd.

INTRODUCTION

Exact solutions for laminated piezoelectric solids provide a very useful means ofcomparison
for developing more efficient and computationally powerful approximate beam, plate, shell,
and continuum models. In piezoelectric solids, the electric and elastic fields are coupled
through the constitutive relations, leading to significantly different behavior than purely
elastic laminates.

Exact solutions for simply-supported, laminated piezoelectric plates have been
obtained by Ray and co-workers (1993), Heyliger (1994), Heyliger and Brooks (1995),
Heyliger and Saravanos (1995), and Xu and co-workers (1995). There have been a number
of studies of laminated piezoelectric cylinders, including those documented and described
in the books of Parton and Kudryavtsev (1988) and Tzou (1993). Others include the
two-dimensional vibration study of Adelman and Stavsky (1975), the studies on wave
propagation by Sun and Cheng (1974) using analytic techniques and by Siao et al. (1994)
using a finite element method, and the study of static behavior using an approximate theory
by Mitchell and Reddy (1995). Paul and Natarajan (1996) examined flexural vibrations of
hollow cylinders of class 6 mm using a separation of variables techniques that resulted in
small but finite errors in satisfying the boundary and surface conditions of the cylinder.

Srinivas (1974) has presented an exact elasticity solution for the response of simply­
supported elastic laminates using the Frobenious method to solve the ordinary differential
equations in the radial variable. In this note, the methodology of Srinivas is extended to
include the effects of laminated cylinders composed either entirely or in part of piezoelectric
layers. In addition to the conditions on the displacements and stresses, the necessary
conditions on the electrostatic potential and electric displacement must be enforced. This
note differs from previous work on piezoelectric cylinders in that the case of simple supporl
is studied and that the analysis is exact as all boundary and surface conditions are satisfied
as well as the governing differential equations.

The solution is constructed for the static three-dimensional response of these cylinders.
The methodology is used to consider the fundamental behavior of these problems, including
the nature of the potential variation through the thickness and the influence of the shell
length/thickness ratio on the elastic and electric fields.
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GEOMETRY AND BOUNDARY CONDITIONS

A circular cylinder is composed of M layers of elastic or piezoelectric material. The
principal geometrical directions of the cylinder align with those of the cylindrical coordinate
system (r, e, z) and the three displacements associated with these directions are denoted as
Un Uo, and UZO The electrostatic potential is denoted by <p. The length of the cylinder in the
axial direction z is L. The cylinder is hollow, with the inner radius defined as R f and the
outer radius Ro . The innermost layer with respect to the radius is defined as layer I, with
the outmost layer defined as layer M. The radial position of the interface between the layer
i and layer (i+ 1) is defined as Ri • The total wall thickness in the radial direction is
Ro-R f = H.

The boundary conditions at the faces normal to the z axis at z = 0 and z = L are those
typically associated with the conditions of simple support combined with the electrical
condition that the end faces are grounded. Hence, at these locations, the following con­
ditions exist:

(1)

where azz is the normal axial stress and the i superscript denotes the variable for a given
layer. On the radial faces r = R f and r = Ro the boundary conditions are more arbitrary
and are discussed in the sequel. Each layer of the laminate is treated as a homogeneous
piezoelectric layer with orthorhombic symmetry. The piezoelectric layers have been poled
in the radial direction.

The three equations of equilibrium are given by (Fung 1965)
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The charge equation of electrostatics is given by (Tiersten 1969)
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The strain-displacement relations are given by

(2)

(3)
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and the field-potential relations are given as

The constitutive equations can be written in compressed notation as

(8)
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(Jp = CpqSq-ekpEk

D i = eiqSq + f,ikEk'
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(9)

Here p and q take the values 1, ... ,6 and i and k take the values I, ... , 3, (Jp are the
components of the stress tensor, Cpq are the elastic stiffness components at constant electric
field, Sq are the components of infinitesimal strain, e iq are the piezoelectric coefficients, E k

are the components of the electric field, D i are the components of the electric displacement,
and f,ik are the dielectric constants at constant strain. The single subscript for the stress
components represents the double subscript notation as the corresponding strain com­
ponents in eqn (6). The rotated elastic stiffnesses are given by CII' C n , C 33 , C 44' C 55 , C 66 ,

C Il , C\3, and C 23 . The non-zero piezoelectric coefficients are given as e\ h e12, e\3, e34, and e25,

and the non-zero dielectric constants are f,\h 1'.22, and 1'.33'

The solution procedure that follows is based on similar steps outlined by Srinivas
(1974) ; hence identical nomenclature is used here. The primary differences in this note are
in the coupling of the elastic and electric field through the constitutive relations and the
satisfaction of the charge equation in addition to those of equilibrium

Substituting eqns (6-8) into eqns (2-5) yields four coupled partial differential equations
in terms of the three displacements, Un Uf), U:, and the electrostatic potential 4>, each of
which is a function of (I', 0, z).

The dependence on the circumferential and axial coordinate can be separated by
assuming fields of the form

,x; oc nn 7

u~(r,e,z) = I I 'PZm(r)sinmesin~-
m~On~O b

(10)

(II)

(12)

(13)

The superscript mn on the radial functions indicates the specific Fourier harmonic being
considered. Substitution of these expressions into the four governing equations yields the
ordinary differential equations

[
d2 I d I ( 2 C ) C N2]lTJnm

CII - + CII - -d· - - C55 m + 22 - 44 T r
dr2 I' I' 1'2

(14)
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(15)

(16)

(17)

where N = nn/b has been introduced. Solutions for the functions 'P are assumed in the
Frobenious form

00

{'P ,(r) ;'Po(r) ;'Pz<r) ;'Pq,(r)} = I rO
+J{H,(j) ;Ho(j) ;Hz(j) ;Hq,(j)} (18)

J~O

where the H(j) terms are constants. The radial functions are still dependent on the associ­
ated Fourier harmonics m and n, but these are dropped for simplicity and this dependence
is assumed. These expressions are then substituted into eqns (13)-(16). Collecting the
coefficients of ro

-
2 yields the matrix equation relating the coefficients for j = 0 as

r

CjjO('-Cssm'-C"

-(C5S +~12)m~-(C55 +,C,,)m

e\\(l +e I2 C(-e2S m

(Css +CdmO(-(C5S +C,,)m

C55 0(' - C"m' - CS5

o

o
o

o

, , je11cx'"-e2Sm -el2C(

-e25 m(O(: I) -e12mO(

-£11C(2+ E22m2

{

Hr(O)} {O}Ho(O) = 0 .

H,(O) °
H.(O) °

(19)

The axial harmonic n does not appear in this initial expression but is contained in recurrence
relations for larger values of j.

A nontrivial solution is obtained if the determinant of this matrix is equal to zero. This
results in an eighth-order polynomial in iX, two roots of which are

rc;::
iX 7 ,8 = ±--jc:m .

After these roots are factored out, the resulting sixth-order polynomial is written as

(20)



Static behavior of piezoelectric cylinders

The coefficients are not given here with the exception of a4 , given as

3785

(21)

(22)

The case of m = 0 corresponds to axisymmetric vibration, in which Uo = 0 and all fields are
independent of the coordinate e. This is a specialized case of the more general problem and
is not considered here. For the cases considered here, there are six roots to eqn (20), all of
which can be found in closed form.

For the case m =I- l, there are typically six distinct roots for r:t.. For} = 0, eqn (18) can
be solved for the constants Hr(O), Ho(O), Hz(O), and Hq,(O). There are a total of eight roots
for r:t., denoted for each constant by the index k, and hence eight of the constants H(O, k)
for each value for k.

For k = l, ... ,6, the constants corresponding to} = 0 are given by

Ho(O, k) =

HrCO, k) = G(k)

[-e2Sm(r:t.+ l)-e I2 mr:t.][e ll r:t.2+eI2r:t.- e2S m2 ]

- [- (C12 +Css)mr:t.- (Css + C 22 )m][ - I'll r:t. 2+e22 m2 ]

(23)

(24)

Hq,(O,k) =

[eI2mr:t.+e2sm(r:t.-l)][ - (C12 +Css)mr:t.- (Css +C22 )m]

- [CSS r:t. 2-(C22 m 2+ CSS)][ellr:t.2 +e12r:t.- e2s m2 j

(25)

(26)

where G(k) are arbitrary constants. For the case k = 7, 8 the parameters are computed as
Hr(O,k) = Ho(O,k) = Hq,(O,k) = 0 and Hz(O,k) = 1.

Continuing to collect the coefficients of r>+j-2 and setting them to zero results in tht:
following system for any}>O.

o
o

(27)

These coefficients depend on the material properties and the values for r:t., m, N, and}. They
are listed in the Appendix.

A sequential solution of this system for each value of } can be constructed using
recurrence relations, and results in computation of the constants Hr(J, k), Ho(J, k), Hz(J, k),
and Hq,(J, k) in the form
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{Hr(j, k) ;Hf}(j, k) ;Hz(j, k) ;H",(j, k)} = G(k){dr(j, k) ;de(j, k) ;dcCf, k) ;d",(j, k)}. (28)

Substitution of these expressions into eqn (17) yields the final form of the displacement and
electrostatic potential as

. ~ ~ nnz 8

ue(r, 8, z) = m~o n~o sin m8 sin b k~1 x'lr(i, k)G(i, k)

OC oc nnz 8

u~(r, 8, z) = m~o n~o cosm8cosb k~1 X~mo, k)GO, k)

. uc oc nnz 8

¢'(r,8,z) = ,,~o,,~o cosm8sinb k~1 t:;nO,k)Go,k)

(29)

(30)

(31 )

(32)

where the functions X are dependent on geometry, material properties, rJ., m, N, and k. The
corresponding stress and electric displacement fields can be computed with little difficulty,
and are not listed here.

When m = I, the coefficient a4 = 0 from eqn (21). Hence there are two repeated roots
for rJ. of zero. In this case, the solutions for the displacements and potential appear in a
slightly different form from that given in eqn (17). If the first root of zero is denoted as IXl>

the solution corresponding to this root is of the form found in eqn (17). A second inde­
pendent solution can be found by differentiating this solution with respect to rJ. and then
letting rJ. go to zero (Srinivas 1974).

For each layer i of the cylinder, the elastic and electric fields are a function of eight
constants GO, k), k = 1, ... , 8. These constants are evaluated by imposing the boundary
conditions at the inner and outer surface and the interface conditions between each layer.
There are four boundary conditions at each surface, and are imposed on either of the
components from the pairs (u" 0',,), (ue, O'rO)' (uz , (Trz), and (¢, Dr). At each interface,
continuity exists for the displacements, potential and radial stress and electric displacement.
For example, the continuity condition for the radial displacement Ur can be written as

(33)

Similar relations exist for Uo, Un ¢, O'm {Tm O'r8' and Dr for each layer. There are a total of 8
boundary conditions (four on each surface) and 8(M -1) continuity conditions for a total
of 8M equations. This corresponds to the 8M unknown constants G(i, k), i = 1, ... , M and
k = 1, ... ,8. Imposition of these conditions results in a linear system that can be solved for
these constants. Substitution into eqns (28)-(31) yields the final form of the solution for
any (r, 8, z) within the cylinder.

NUMERICAL EXAMPLES

Convergence and validation
Several different claims have been made about the rate of convergence of the type of

series solution used here. Srinivas (1974) states that the series solution is slowly convergent
for the three-dimensional elastic cylinder, with between 80 and 140 terms required for good
accuracy. Mirsky (1964) has noted that the power-series expansions converge rapidly for
the problem of wave propagation in an infinite elastic cylindrical shell, but did not quantify
this statement.

The convergence is tested here using a single layer shel1 composed of PZT-4 under an
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Table I. Elastic, piezoelectric, and dielec­
tric properties of piezoelectric material
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e" (GPa)
C"
CJ]

C"
CIl

Cn
C44

C"
C66

"34(C!m2)
e25

ell

e l2

C l3

8 11 /£0

E22/ EO

En/Eo

applied radial stress on the outer surface of the form

115.0
139.0
139.0
74.3
74.3
77.8
25.6
25.6
30.6
12.72
12.72
15.08

-5.08
-5.20
1300
1475
1475

(34)

The material properties used are those listed in Table 1 (Berlincourt and co-workers 1964).
The geometric parameters are R[ =,0.005 m, Ro = 0.01 m, and L = 0.01 m. The outer and
inner surfaces are fixed at zero potential. The inner radial surface is traction free, as is the
outer surface with the exception of the (Jrr distribution.

Table 2 shows the result of substituting the series solutions into the governing equi­
librium and charge evaluations evaluated at r = Rh with the headings of the columns
indicating the specific equation. Adequate convergence is achieved after 50 terms. Similar
trends exist for other locations within the shell as well as other geometries and boundary
conditions. The error for 100 terms is also shown for thinner shells, with a slight increase
in error resulting as the shell becomes thin. However, there appears to be little loss in
accuracy and the results are still excellent.

To further validate the solution procedure and verify basic trends, an additional
example is considered and compared with results found using a semi-analytic finite element
methodology similar to that described by Siao et al. (1994), from which additional details
can be obtained. In this approximate method, the circumferential and axial variations are
described by analytic functions and the radial variation is modeled using quadratic finite
elements through the thickness of the cylinder. A number of different layers can then be
used to describe the thickness dimensions of the laminate.

Table 2. Error in governing equations versus terms in series

Equation

Terms

I
3
5
7
10
25
50

100
100 (R, = 0.009)
100 (R, = 0.0099)
100 (R, = 0.00999)

'LF,

-0.588e3
0.223e3
OA81e3
0.803e2
0.116el

-0.310e-11
-0.224e-24
-0.224e-24
-0.643e-24
-0.234e-22

0.144e-21

-0.154e4
-OA33e3
-0.530e3
-OA6ge2
-OA2IeO

0.307e-12
-0.693e-25
-0.693e-25
-0.153e-25
-0.217e-23

0.29Ie-22

SF,

0.312e4
0.546e3
0.554e3
OA13e2

-0.29gel
-0.272e-12

0.546e-25
0.546e-25
0.937e-25
OA65e-23

-0.32Ie-22

divD

-0.304e-6
0.235e-7
0.832e-7
0.904e-8
0.23ge-10

-0.564e-2l
0.23Ie-33
0.23Ie-33
0.58Ie-33
0.225e-3l
0.155e-30
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Table 3. Comparison of exact field quantities with results from semi-analytic finite element calculation

a. R 1 = 0.05
Layers U, x 10'0 Uo X 1010

U, X 1010 cjJ

1 0.120\0 -0.22630 0.26473 0.36095
2 0.099622 -0.2233\ 0.26079 0.36638
4 0.10026 -0.22294 0.26054 0.36625
10 0.10034 -0.22292 0.26050 0.36624

Exact 0.10034 -0.22292 0.26050 0.36624

b. R1 = 0.009
Layers U,x 10" uox 10" U, X 10'0 cjJ

I 0.839\8 -0.78123 0.11667 0.50397
2 0.83289 -0.78450 0.\1713 0.50402
4 0.83295 -0.78449 0.\1713 0.50402
10 0.83296 -0.78449 0.\1713 0.50402

Exact 0.83296 -0.78449 0.11713 0.50402

For this case, we would consider the same cylinder used above with a potential of the
form

n'7
cP(RoJJ,z) = cos 28 sin ~ (35)

applied at the outer surface with the inner surface at R[ fixed at zero potential. Both the
inner and outer surfaces of the shell are traction-free. Two inner radii are considered: 0.005
m and 0.009 m, representing a thick and thin shell, respectively. Different numbers of layers
or elements are used to model the thickness of the shell: 1, 2, 4, and 10.

The three displacement components and the electrostatic potential at the geometric
center of the shell thickness are listed in Tables 3a and 3b. The agreement is excellent, with
4 layers yielding very good accuracy and the results using 10 layers coinciding with the
exact solution. From these tables, it is clear that the smaller number of layers results in
smaller errors as the shell becomes thin. The potential for the thin shell is close to 0.5,
indicating nearly linear behavior. The thick shell departs dramatically from this behavior,
as it does even for the purely electrostatic problem. The excellent agreement shown indicates
an accurate numerical solution.

Variation ofpotential
The nature of the electrostatic potential distribution through the cylinder thickness is

strongly dependent upon the relative shell thickness. As the radial thickness varies from
thin to thick, the distribution goes from nearly linear behavior to strongly nonlinear.
Additionally, the influence of piezoelectric coupling varies as the shell thickness changes
for a cylinder of fixed outer radius and height. In this example, this influence is studied by
considering a single layer shell of PZT-4. The geometric parameters are L = 0.01 m and
Ro = 0.01 m.

The case of imposed surface potentials as used in the previous section in equation (35)
is repeated here, with three values of the inner radius considered to vary the thickness of
the shell. The strength of the coupling is demonstrated in this example by plotting the
parameter s, which is defined as cPc/cPo - 1, with cPc representing the potential for the coupled
piezoelectric field and cPn the potential for the electrostatic problem with no piezoele:ctric
coupling (i.e. all e,j = 0). The parameter s is measured at 8 = 0 and z = L/4 and plotted
through the shell thickness. This is shown in Fig. 1 for the following values of R[: 0.0025
(dotted line), 0.005 (dashed line), and 0.009 (solid line). All distributions in this section are
plotted through the normalized radial parameter R = (r - R[) /H. As the shell thickness
becomes thin, there is a smaller difference in the potential for the two cases. For thicker
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0.000

S
Fig. I. Difference in electrostatic potential for coupled and uncoupled fields for single layer shell

(-: H= 0.009, ---: H = 0.005,"': H = 0.0025).

shells, there are larger changes in the potential distribution toward the inner surface, with
nearly ten percent difference for the thickest shell. Though not shown, the through-thickness
potential distributions for the two thickest shells are highly nonlinear, while the case of
R[ = 0.009 yields a potential distribution which is nearly linear. This further demonstrates
the need to accept the assumption of constant electric field for thin shells only.

A three-layer shell
A three-layer shell under an imposed radial deformation (m = 2, N = 1,

Umax = 1 x 10-8
) is considered next. Two materials are used. The first is the PZT-4 with the

properties listed in Table 1. This material forms the outer and inner layers of the shell. The
middle layer is formed of a material with the elastic properties exactly half of the PZT-4
and the piezoelectric and dielectric constants exactly double those of the PZT-4. The
purpose of this example is to observe the trends in the fields, particularly near each interface,
as the thickness changes relative to the cylinder length.

The length and outer radius of the shell are again fixed at L = Ro = 0.01 m. Four total
shell thicknesses H are considered and divided into three layers of equal thickness. The
properties are those described above. The resulting field distributions are shown in Fig. 2a­
[for the values of R[: 0.0025 (solid line), 0.005 (dotted line), 0.0075 (dashed line), and 0.009
(dot-dashed line).

There is clearly much more variability in the field components for the thicker shells.
As the shell becomes thin, both the circumferential and axial displacements tend towards
linear behavior through the thickness and the radial displacement tends toward constant
behavior. Even for a relatively thick shell (LjH = 4) the approximation of linear variation
through the thickness may prove to be adequate. The potential distribution shown in Fig.
2d also yields significant breaks in slope across each interface. This is caused by the jump
in the elastic and electric properties, and indicates that approximate theories that impose
either linear or parabolic behavior through the thickness may not accurately represent the
behavior for thicker shells. However, simpler approximations may be sufficient for thin
shells.
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Similar trends are observed for the stress and electric displacement distributions. Figure
2e and f show the distributions for rre and D" respectively, through the thickness. As the
shell becomes thin, the shear stress tends towards parabolic behavior while the electric
displacement tends towards constant behavior. Both assumptions are somewhat common
in approximate piezoelectric plate theories, and indicate that similar assumptions would be
valid for thin piezoelectric shells.

CONCLUSIONS

By extending the procedure of Frobenious as used by Srinivas (1974), exact solutions
for the three-dimensional static behavior of laminated piezoelectric cylindrical shells with
simple support have been developed. The results compare extremely well with results from
a semi-analytic finite element model. For the shells considered in this study, it was found
that the assumptions of constant radial displacement and linear circumferential and axial
displacement may yield sufficient accuracy for shells with LjH ratios of around 4. For an
applied surface potential, the thickness distribution also approaches linear behavior at this
same ratio, and parabolic behavior for other forcing conditions with the outer and inner
surfaces fixed at ground. The distributions presented here should also provide a basis for
comparison for other approximate shell theories.

REFERENCES

Adelman, N. T. and Stavsky, Y. (1975) Vibrations of radially polarized composite piezoceramic cylinders and
disks. Journal of Sound and Vibration 43, 37-44.

Berlincourt, D. A., Curran, D. R. and Jaffe, H. (1964) Piezoelectric and Piezomagnetic Materials and their
Function in Transducers. In Physical Acoustics, Ed. W. P. Mason, Vol. I, pp. 169-270. Academic Press, New
York.

Fung, Y. C. (1965) Foundations ofSolid Mechanics. Prentice-Hall, Englewood Cliffs, NJ.
Heyliger, P. R. (1994) Static behavior of laminated elastic/piezoelectric plates. AIAA Journal 32, 2481-2484.
Heyliger, P. R. and Brooks. S. P. (1995) Free vibration of piezoelectric laminates in cylindrical bending. Inter-

national Journal of Solids and Structures 32, 2945-2960.
Heyliger, P. R. and' Saravanos, D. A. (1995) Exact free vibration behavior of laminated plates with embedded

piezoelectric layers. Journal of the Acoustical Society of America 98, 1547-1557.
Mirsky, 1. (1966) Three-dimensional and shell-theory analysis for axisymmetric vibrations of orthotropic shells.

Journal of the Acoustical Society of America 39,549-555.
Mitchell, J. A. and Reddy, J. N. (1995) A study of embedded piezoelectric layers in composite cylinders. ASME

Journal of Applied Mechanics 62, 166-173.
Parton, V. Z. and Kudryavtsev, B. A. (1988) Electromagnetoelasticity. Gordon and Breach Science Publishers,

New York.
Paul, H. S. and Natarajan, K. (1996) Flexural vibration in a finite piezoelectric hollow cylinder of class 6mm.

Journal of the Acoustical Society of America 99, 373-382.
Ray, M. c., Bhattacharya, R. and Samanta, B. (1993) Exact solutions for static analysis of intelligent structures.

AIAA Journal 31, 1684-1691.
Siao, J. c.-T., Dong, S. B. and Song, J. (1994) Frequency spectra of laminated piezoelectric cylinders. ASME

Journal of Vibration and Acoustics 116, 364-370.
Srinivas, S. (1974) Analysis of laminated, composite, circular cylindrical shells with general boundary conditions.

NASA TR R-412, NASA Langley Research Center.
Sun, C. T. and Cheng, N. C. (1974) Piezoelectric waves on a layered cylinder. Journal of Applied Physics 45, 4288­

4294.
Tiersten, H. F. (1969) Linear Piezoelectric Plate Vibrations. Plenum Press, New York.
Tzou, H. S. (1993) Piezoelectric Shells: Distributed Sensing and Control of Continua. Kluwer Academic, Norwell,

MA.
Xu, K., Noor, A. K. and Tang, Y. Y. (1995) Three dimensional solutions for coupled thermoelectroelastic

response of multilayered plates. Computer Methods in Applied Mechanical Engineering 126, 355-371.

APPENDIX

The coefficients F, given in eqn (26) are expressed as

F 2 ={C 12 +C,,)m(cx+})+(C,,+Cnlm

(36)

(37)

(38)
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F4 = -(CI,+c,,)m(:x+j)-(C,,+Cdm (39)

F, = C,,(:x+j)'-(C22 m'+C,,) (40)

F6 = -e,sm(:x+j+l)-el,m(:x+j) (41)

F7 = C44 (a+j)2 - C66 m'j (42)

Fs = ell(:x+j)'-e"m'+e12(IX+j) (43)

F9 = e,sm(lX+j-l)+el,m(a+j) (44)

F ll = - C44 N' H,(j-2) + [(C44 + CIJ)N(IX+j-l) +(C IJ -C2J )NJHc (j-l) +eJ4N'H.(j-2) (46)

F l2 = C66 N'H/I(j-2)-(C2J +C66 )mNHc(j-l) (47)

Fl J = - [(C44 + C I1 )N(a+j-l) + (C44 +C,,)1V]H,(j-l) - (C06 +C2J)mNH/I(j-l)

+ C,J N' HAj-2) - [eJ4N(,~+j)+eIJN(a+j-l)]H.(j-l) (48)

Fl4 = ew'V' H,(j-2) + [eIJN(a+j) +ew'V(:x+i-l)]HJi-l) -f."N' H,p(j-2). (49)


